HSV1 Mutation Detail Information

Virus Mutation HSV1 Mutation A899T


Basic Characteristics of Mutations
Mutation Site A899T
Mutation Site Sentence (ii) A double mutant (UL52: A899T and UL5: K356T) is 2500-fold resistant to BAY 57-1293, which is more than 17 times the sum of fold-resistance due to the individual mutations, UL52: A899T (43-fold) and UL5: K356T (100-fold).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region UL52
Standardized Encoding Gene UL52  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Herpes simplex    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment BAY 57-1293
Location -
Literature Information
PMID 18299638
Title A single drug-resistance mutation in HSV-1 UL52 primase points to a difference between two helicase-primase inhibitors in their mode of interaction with the antiviral target
Author Biswas S,Kleymann G,Swift M,Tiley LS,Lyall J,Aguirre-Hernandez J,Field HJ
Journal The Journal of antimicrobial chemotherapy
Journal Info 2008 May;61(5):1044-7
Abstract OBJECTIVES: To investigate the mechanism of action of the helicase-primase inhibitors (HPIs) BAY 57-1293 and BILS 22 BS by selection and characterization of drug-resistant herpes simplex virus (HSV)-1 mutants. METHODS: HSV-1 mutants were selected using BAY 57-1293 in Vero cells. Resistance mutations identified in the UL5 helicase or UL52 primase genes were validated by marker transfer. Cross-resistance to the structurally distinct BILS 22 BS was measured by ID(50) determinations. RESULTS: (i) A single mutation (UL52: A899T) confers 43-fold resistance to BAY 57-1293, but does not confer any resistance to BILS 22 BS. (ii) A double mutant (UL52: A899T and UL5: K356T) is 2500-fold resistant to BAY 57-1293, which is more than 17 times the sum of fold-resistance due to the individual mutations, UL52: A899T (43-fold) and UL5: K356T (100-fold). (iii) Virus containing the single helicase mutation and the double mutant with mutations in both helicase and primase showed equal resistance to BILS 22 BS (70-fold). CONCLUSIONS: By measuring the relative inhibitory concentrations required to overcome particular mutations in the helicase and primase proteins, evidence was obtained that BAY 57-1293 interacts with both components of the helicase-primase complex to achieve maximum potency, whereas for BILS 22BS, this may not be the case. Furthermore, our observations suggest that BAY 57-1293 interacts simultaneously with UL5 and UL52. Overall, the results suggest that these two potent HPIs interact differently with the helicase-primase complex.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.