RABV Mutation Detail Information

Virus Mutation RABV Mutation L41A


Basic Characteristics of Mutations
Mutation Site L41A
Mutation Site Sentence For this approach, we designed and generated a series of RV M mutants in which either the PPEY, YxxL, or both motifs were altered. For example, we introduced three mutations within 35PPEY38VPL41 (P35S, P36A, and Y38A) and one mutation downstream of PPEY (L41A) which exchanged the L of the YxxL to an A.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region M
Standardized Encoding Gene M
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 18667490
Title PPEY motif within the rabies virus (RV) matrix protein is essential for efficient virion release and RV pathogenicity
Author Wirblich C,Tan GS,Papaneri A,Godlewski PJ,Orenstein JM,Harty RN,Schnell MJ
Journal Journal of virology
Journal Info 2008 Oct;82(19):9730-8
Abstract Late (L) domains containing the highly conserved sequence PPXY were first described for retroviruses, and later research confirmed their conservation and importance for efficient budding of several negative-stranded RNA viruses. Rabies virus (RV), a member of the Rhabdoviridae family, contains the sequence PPEY (amino acids 35 to 38) within the N terminus of the matrix (M) protein, but the functions of this potential L-domain in the viral life cycle, viral pathogenicity, and immunogenicity have not been established. Here we constructed a series of recombinant RVs containing mutations within the PPEY motif and analyzed their effects on viral replication and RV pathogenicity. Our results indicate that the first proline at position 35 is the most important for viral replication, whereas P36 and Y38 have a lesser but still noticeable impact. The reduction in viral replication was most likely due to inhibition of virion release, because initially no major impact on RV RNA synthesis was observed. In addition, results from electron microscopy demonstrated that the M4A mutant virus (PPEY-->SAEA) displayed a more cell-associated phenotype than that of wild-type RV. Furthermore, all mutations within the PPEY motif resulted in reduced spread of the recombinant RVs as indicated by a reduction in focus size. Importantly, recombinant PPEY L-domain mutants were highly attenuated in mice yet still elicited potent antibody responses against RV G protein that were as high as those observed after infection with wild-type virus. Our data indicate that the RV PPEY motif has L-domain activity essential for efficient virus production and pathogenicity but is not essential for immunogenicity and thus can be targeted to increase the safety of rabies vaccine vectors.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.