IV Mutation Detail Information

Virus Mutation IV Mutation S31N


Basic Characteristics of Mutations
Mutation Site S31N
Mutation Site Sentence However, S31N mutation in M2 proton channel diminishes the efficiency of rimantadine and creates resistance.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region M2
Standardized Encoding Gene M
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Influenza A     Influenza B    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment rimantadine
Location -
Literature Information
PMID 27486041
Title Discovery of Potential, Non-Toxic Influenza Virus Inhibitor by Computational Techniques
Author Karthick V,Toropova AP,Toropov AA,Ramanathan K
Journal Molecular informatics
Journal Info 2014 Aug;33(8):559-65
Abstract Influenza infection continues to be a major problem in many parts of the world. Rimantadine is a first-line drug used to treat the influenza infection by targeting M2 proton channel. However, S31N mutation in M2 proton channel diminishes the efficiency of rimantadine and creates resistance. To address this issue, the present study was aimed to screen the effective lead candidate against drug resistance strain of influenza from DrugBank database. Initially, the lead molecules were filtered using Lipinski rule of five and the drug likeliness property. Subsequently, the data reduction was carried out by employing molecular docking study. Finally, molecular dynamics simulations techniques were performed to validate the lead compound. Most importantly, the -p LD50 of the screened lead molecule was calculated using CORAL software to estimate the Rat oral toxicity. Accordingly, memantine may possibly become a promising lead compound of rimantadine-resistant influenza virus strain.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.