IV Mutation Detail Information

Virus Mutation IV Mutation V458L


Basic Characteristics of Mutations
Mutation Site V458L
Mutation Site Sentence This was associated with the emergence of a V458L mutation in the HA2 subunit of HA and with a decrease in viral pathogenicity.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region HA
Standardized Encoding Gene HA
Genotype/Subtype -
Viral Reference P03452
Functional Impact and Mechanisms
Disease Influenza A     Influenza B    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location Puerto Rico
Literature Information
PMID 30165308
Title Selection of influenza virus resistant to the novel camphor-based antiviral camphecene results in loss of pathogenicity
Author Zarubaev VV,Pushkina EA,Borisevich SS,Galochkina AV,Garshinina AV,Shtro AA,Egorova AA,Sokolova AS,Khursan SL,Yarovaya OI,Salakhutdinov NF
Journal Virology
Journal Info 2018 Nov;524:69-77
Abstract Due to the ability of influenza virus to develop drug resistance, the search for novel antivirals is an important goal of medical science and health care systems. We assessed the ability of the influenza virus to develop resistance to the hemagglutinin inhibitor camphecene and characterized laboratory-selected resistant strains. We showed by electron microscopy that camphecene decreases the number of virions fusing their envelopes with endosomal membranes. A 160-fold decrease in virus susceptibility was observed after six passages in cells. This was associated with the emergence of a V458L mutation in the HA2 subunit of HA and with a decrease in viral pathogenicity. Molecular modeling predicts that this substitution results in a more stable HA molecule compared to wild-type HA; and an altered camphecene-binding site. Therefore, despite the relatively rapid development of resistance, camphecene remains promising as a potential antiviral due to the low pathogenicity of resistant viruses that may arise.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.